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ABSTRACT 

Let A and E be n X n matrices and B = A + E. Denote the Drazin inverse of A by 
A”. In this paper we give an upper bound for the relative error II B” - AD II /II A” (1 2 
and a lower bound for II BDll 2 under certain circumstances. The continuity properties 
and the derivative of the Drazin inverse are also considered. 

I. INTRODUCTION 

A necessary and sufficient condition for the continuity of the Drazin 
inverse (to be defined in detail in Section II) was proved by Campbell and 
Meyer in 1974 [l], but no explicit bound has yet been found. In Campbell’s 
1974 paper, he stated the main result: Suppose that Ai, j = 1,2,. . . , and A are 
n X n complex matrices such that A, + A. Then AT + AD (where AD is the 
Drazin inverse of A) if and only if there is a real number j0 such that 
corerank Ai = corerank A for i a i0 [where corerank A = rank AicA) and the 
index i(A) of A is defined as the smallest integer k > 0 such that the range of 
Ak equals the range of Ak+l, i.e. R( Ak) = R( Ak+‘)]. 

In the same paper, Campbell indicated two difficulties in establishing 
norm estimates for the Drazin inverse: First, the Drazin inverse has a weaker 
type of “cancellation law” and is somewhat harder to work with algebraically 
than the Moore-Penrose. Also complicating things is the fact that the Jordan 
form is not a continuous function from CnXn --) CnX” and the Drazin inverse 
can be thought of in terms of the Jordan canonical form. 

Again in [2] (1979), Campbell gave some idea about the condition number 
with respect to the Drazin inverse, expressed in terms of Jordan form: If one 
is going to calculate AD by AD = Ak(A2kt1)tAk, where A+ is the Moore- 
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Penrose inverse of A, then rather than II A \I( I( AD II + 1) or some such, a much 
better idea of the conditioning would be 

C(A)= Il~llIIP-lII(llJllk+IIJ+Ilk), 

where PJP-’ is the Jordan form of A. 
In this paper we shall give an explicit bound for /I B D - AD II/II AD II a in 

terms of A, AD, and E = B - A, provided E is sufficiently small when 
rank Bk = rank Ak, where k = max (i(A), i(B)). On the other hand, if rank Bk 
> rank Ak, we shall find a lower bound for II BD II a which tends to infinity as 
B approaches A. 

In the next section some mathematical background that will be needed 
later is introduced. 

II. PRELIMINARY 

It is assumed that readers are familiar with the concepts and results listed 
below. 

(a) For every matrix AE@“~“, there exists a unique matrix ADS @ nxn, 
satisfying 

AhilAD= Ah for some positive integer h , 0) 

ADAAD = AD, (2) 

AAD= ADA. (3) 

The matrix AD is called the Drazin inverse of A. 

(b) For every matrix AE CmXn, there exists a unique matrix A+ E CnXm, 

satisfying 

A+AA+ = A, 

AA+A=A+. 

(AA+)H=AA+, 

(A+A)~ = A+A, 

(4 

where AH is the conjugate transpose of A. The matrix A+ is called the 
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Moore-Penrose inverse of A. 

(c) 

(i) Let rankA=rank(A+E),I]AtII,]IEJ12<1. Then 

II(A+E)+lI,~ IIA+ II2 
1-IIA+ l1211Ell, 

where /I . II 2 denotes the spectral norm of A, i.e., 

IIAIl,= sup IIAxll,. 
XEC” 

I/x/l~= 1 

(ii) Let rank( A + E) > rank A. Then 

II(A+E)+ II+&. 
2 

(d) Let k = i(A). For every positive integer h 2 k, (a) holds and 

(5) 

(e) Unless it is indicated specifically, a (fixed) unitarily invariant norm is 
applied throughout this paper. Thus, for every matrix AE Cnx” and every 
unitary matrix UEC”~“, IJUAU”II = IIAl]. 

Further, the following two inequalities are always used: for every matrix 
AE UZnxn, 

llAll2~ IIAII, 
(8) 

IIABII G lIAl1211BII or IIAII IIBl12. 

For the details of Moore-Penrose inverse and Drazin inverse, see the books 
by Ben-Israel and Greville [3] and by Campbell and Meyer [2]. The proof of 
(c) has appeared in Noble’s paper [4]. Mirsky has given a systematic treat- 
ment of unitarily invariant norms [5]. 
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III. THE CASE rank Ak = rank (A + E)k 

Let A, EEC"~", B = A + E, and for any arbitrary positive integer h, 
defineE(Ah)byBh-AAh=E(Ah).Then)IBh(Iz~)IAhII,+&(Ah),where 

h-l 

&(A”)= 2 C,,IIAIlj,IIEll;-‘2 llE(Ah)llg 
i=O 

and CL is the binomial coefficient. 

LEMMA 1. Let rankBh=rankAh and II(Ah)‘II,G(Ah)<l. Then 

II( l/z< 
II( II2 

l-II( II& ’ 

II( 112= ll[Ah+E(Ah)]+ ll2G 
II( 112 

l-II( ll,llE(Ah)ll~ 

< II( II2 

l-II( II& ’ 
n 

THEOREM 1. Let k = i(B), rank Ak = rank Bk, and \I( Azk+l)+ II2 
&$A2k+1 )<l. Then 

It BD II 2 =G 
lI(A2k+1)~+ I12[llAkl12+G(Ak)]2 

1-lI(A2k+‘)+ Il,~(Azk”) ’ 

Proof. Since BD = Bk(B2k+‘)tBk, 

IIBDI12~ llBklI;lI(B2k+1)+ II2 

G 
11(A2k+1)+ II2 

1-II(A2k+1)+ (12&(Azkt1) 
[lIAkl12+&(Ak)]‘, byLemma1. 
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Theorem 1 tells us BD = (A + E)D is bounded in the neighborhood of 
)I E II provided rank AicB) = rank BiCB). This is one of the bases for deriving the 
error estimate for the Drazin inverse, and the second is contained in the 
asymptotic expansion of B” - AD. It can be derived as follows: 

Let k = max{i(A), i(B)}. Then 

BD-AD= -BDEAD+[BD-ADfBD(B-A)AD] 

= -BDEAD+BD(l-AAD)-(l-BDB)AD 

= - BDEAD + ( BD) ‘+‘Bk(l- AAD)-(l- BDB)Ak(AD)k+’ 

= -BDEAD+(BD)k+l[Ak+E(Ak)](l-AAD) 

-(l- BDB)[Bk-E(Ak)](AD)k+’ 

= - BDEAD+(BD)k+lE(Ak)(l-AAD) 

+(l- BDB)E(A”)(AD)k+l (9) 

By taking II. II of both sides of (9) and noticing (8), 

where 

k-l 

lIE( G 2 C:IIAll~llEllk-i. 
i=O 

Let &(Azk”)ll(Azk”)’ II2 (1 and rank Ak = rank Bk. Then by Theorem 1, 
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Substitute BD in the right hand side of (9): 

+{l-[AD+O(lIEll)](A+E)}E(Ak)(AD)”+’ 

k-l 

z-ADEA~+(AD)~+’ x AiEAk-l-i(l_ AAD) 

i=O 

k-l 

+(l- ADA) z AiEAk-l-i(AD)k+l 40(jlE(12) 
i=O 

k-l 

= -AREAS+ z (A~)‘+~EX(~-AA~) 
i=O 

k-l 

+(1-AAD) x AiE(AD)i+2+O(IIEli2). 
i=O 

n (10) 

We are now in a position to prove the theorem bounding (( BD - 
ADII/IIADl12. 

THEOREM 2. Let k = max{i(A), i(B)}, rank Ak = rank Bk, and 
ll(A2k”)+ II 2&(A2k”) -C 1. Then 

IIBD-ADIt <C(A) ItEll 
IIADl12 . 

m +o(llEll), 
2 

where the condition number 

k-l 

C(A)= 2 2 lI(AD)i+111211Ail12(1+llAI1211ADl12)+llADl~2 IIAll2, 
i=O 1 and o(ll E II) is of the second order in E. 

Proof Take (1. II of both sides of (10) to get that 

[ 

k-l 

IIBD-ADIIG 2 z II(AD)i+z IlzllAiI12(1+IIAllzllADII,)+IIADll~ IIEII 
i=O 1 

+l10(llEl12)ll, 

and the result is obvious. n 
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Theorem 2 additionally suggests that k may have an effect on II BD - 

ADII,‘lIADII,, if one notes that C(A) > 4k + 1, where the 4 results from the 

“crude” estimate I/ A I/ II ADI1 2 II AAn /I a 1. 
Moreover, by Theorem 2, we get the sufficient condition for continuity. 

COROLLARY 2. Let IIEjl( +O, ki =max{i(A), i(A + Ei)}. Ifthere exists 
a positive integer i, such that fix every i B i,, rank Akl = rank( A + Ei )kl, then 
(A+E,)-AD. 

The derivative of AD can also be derived from (10). Define corerank A = 
rank( AiCA)), k = i(A). If A(t) is a differentiable matrix function and 
corerank A(t) = constant, i(A(t))< k, for every t, then 

DdA -A =AD. 

These two results have been obtained by Campbell and Meyer by 
different methods [l, 61. 

IV. THE CASE rank Ak < rank (A + E)k 

The next lemma, which we have used to obtain a vector YE R(A + E)kfl 
N( Ak), where N(A) is the null space of A, is proved by Campbell and Meyer 

PI. 

LEMMA 2. Let S, T be subspaces c C “, dim S > dim T, and C n = T@T’. 
Then there exists .z # 0, z E SnT’. 

THEOREM 3. Let B = A + E, k = max{i(A), i(B)}, rank Bk > rank Ak. 
Then 

IIBDII,~ l 
&( Ak)l’k ’ 

Proof. Note that R( Ak)@iV( Ak) = CR. Thus, by Lemma 2, rank Bk > 
rank Ak implies there exists y # 0, y E R( B k, fW( Ak). Without loss of general- 
ity, we can assume II y II 2 = 1. 
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Again note that BDB is a projection on R(Bk) along N(Bk) and BDB = 

( BD)kBk. Then 

1= yHy = yH(BD)kBky 

= yH( BD)kE( Ak)y 

G IIBDIl;G(Ak), by the Cauchy inequality. 

In other words. 

IIBDI12a ’ 
&( Ak)l’k * 

The following example shows this lower bound is sharp for k = 2. It is 
related to an example in [2, p. 2321. 

EXAMPLE. Let 

A=[; ;I, E=[; ;]. 

Then 

AD=Oand(A+E)D= [Ii& (I/J 

and i(A) = 2, i( A + E) = 1. Thus k = 2 and rank( A + E)2 = 1> rank A2 = 0. 

By noting that II A II i is the maximum eigenvalue of ATA, we have 

Il(A+E)“ll,=(l/~)/~, &(A2)= llE~l~+211A((2~~E((2=~2+2~. 

Hence 

lim II(A+E)Dl12&(A2)“2=1. 
e-00 

PROPOSITION. Let II Ei II 2 + 0, ki =max{i(A+ E,),i(A)}. Then there ex- 

ists a positive integer i, such that for every i > i,, rank(A + Ei)ka > rank Akl. 
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Proof, Assume there exists an infinite subsequence {A + Eii} such that 

rank( A + Ei,)k’i < rank Akli, 

or alternatively, 

rank(A+E,,)“<rankA”. 

Apply (6), and we have 

II(An)+l12~L-oo 
‘i,tA”) 

when j-00, 

a contradiction. n 

By this proposition and Theorem 3, we can prove the necessary condition 
for the continuity that was proved in Campbell and Meyer [l], in a different 

way. 

COROLLARY 4. Let llE,II,~O, ki=max{i(A),i(A+Ei)), and rank(A 
+ Ei)kl #rank Akl. Then (A + Ei)D*AD. 

Proof. By the last proposition, rank(A + Ei)kl # rank Akl implies that 
there exists a positive integer i, such that for every i 2 i,, rank(A + Ei)kf > 
rank Ake. By Theorem 3, Il(A + Ei)D I) 2 2 l/&(Ak~)‘/k~ --) co. 

V. CLOSING REMARK 

The decomposition AD = Ak(Azktl)+Ak shows that the continuity for 

(A2k+1)+ . 1s essential for the continuity for AD. So in our paper we have 
considered the perturbation &(A2k”) of A2k+1 as a whole instead of the 
perturbation II E II of A. The derivation of the norm estimate for the Drazin 
inverse turns out surprisingly simple and conventional, and we have worked 
out the continuity theorem and the differentiation of AD from a unified point 
of view. 
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