The Error Bound of the Perturbation of the Drazin Inverse

Guang-Hao Rong
Department of Mathematics
University of Wisconsin-Madison
Madison, Wisconsin 53706

Submitted by Hans Schneider

Abstract

Let A and E be $n \times n$ matrices and $B=A+E$. Denote the Drazin inverse of A by A^{D}. In this paper we give an upper bound for the relative error $\left\|B^{D}-A^{D}\right\| /\left\|A^{D}\right\|_{2}$ and a lower bound for $\left\|B^{D}\right\|_{2}$ under certain circumstances. The continuity properties and the derivative of the Drazin inverse are also considered.

I. INTRODUCTION

A necessary and sufficient condition for the continuity of the Drazin inverse (to be defined in detail in Section II) was proved by Campbell and Meyer in 1974 [1], but no explicit bound has yet been found. In Campbell's 1974 paper, he stated the main result: Suppose that $A_{i}, j=1,2, \ldots$, and A are $n \times n$ complex matrices such that $A_{j} \rightarrow A$. Then $A_{i}^{D} \rightarrow A^{D}$ (where A^{D} is the Drazin inverse of A) if and only if there is a real number j_{0} such that corerank $A_{j}=$ corerank A for $j \geqslant i_{0}$ [where corerank $A=\operatorname{rank} A^{i(A)}$ and the index $i(A)$ of A is defined as the smallest integer $k \geqslant 0$ such that the range of A^{k} equals the range of A^{k+1}, i.e. $\left.R\left(A^{k}\right)=R\left(A^{k+1}\right)\right]$.

In the same paper, Campbell indicated two difficulties in establishing norm estimates for the Drazin inverse: First, the Drazin inverse has a weaker type of "cancellation law" and is somewhat harder to work with algebraically than the Moore-Penrose. Also complicating things is the fact that the Jordan form is not a continuous function from $\mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}$ and the Drazin inverse can be thought of in terms of the Jordan canonical form.

Again in [2] (1979), Campbell gave some idea about the condition number with respect to the Drazin inverse, expressed in terms of Jordan form: If one is going to calculate A^{D} by $A^{D}=A^{k}\left(A^{2 k+1}\right)^{+} A^{k}$, where A^{+}is the Moore-

Penrose inverse of A, then rather than $\|A\|\left(\left\|A^{D}\right\|+1\right)$ or some such, a much better idea of the conditioning would be

$$
C(A)=\|P\|\left\|P^{-1}\right\|\left(\|J\|^{k}+\left\|J^{+}\right\|^{k}\right)
$$

where $P J P^{-1}$ is the Jordan form of A.
In this paper we shall give an explicit bound for $\left\|B^{D}-A^{D}\right\| /\left\|A^{D}\right\|_{2}$ in terms of A, A^{D}, and $E=B-A$, provided E is sufficiently small when $\operatorname{rank} B^{k}=\operatorname{rank} A^{k}$, where $k=\max (i(\Lambda), i(B))$. On the other hand, if rank B^{k} $>\operatorname{rank} A^{k}$, we shall find a lower bound for $\left\|B^{D}\right\|_{2}$ which tends to infinity as B approaches A.

In the next section some mathematical background that will be needed later is introduced.

II. PRELIMINARY

It is assumed that readers are familiar with the concepts and results listed below.
(a) For every matrix $A \in \mathbb{C}^{n \times n}$, there exists a unique matrix $A^{D} \in \mathbb{C}^{n \times n}$, satisfying

$$
\begin{align*}
A^{h+1} A^{D} & =A^{h} \quad \text { for some positive integer } h \tag{1}\\
A^{D} A A^{D} & =A^{D} \tag{2}\\
A A^{D} & =A^{D} A \tag{3}
\end{align*}
$$

The matrix A^{D} is called the Drazin inverse of A.
(b) For every matrix $A \in \mathbb{C}^{m \times n}$, there exists a unique matrix $A^{+} \in \mathbb{C}^{n \times m}$, satisfying

$$
\begin{align*}
A^{+} A A^{+} & =A \\
A A^{+} A & =A^{+} \\
\left(A A^{+}\right)^{H} & =A A^{+} \tag{4}\\
\left(A^{+} A\right)^{H} & =A^{+} A
\end{align*}
$$

where A^{H} is the conjugate transpose of A. The matrix A^{+}is called the

Moore-Penrose inverse of A.
(c)
(i) Let $\operatorname{rank} A=\operatorname{rank}(A+E),\left\|A^{+}\right\|_{2}\|E\|_{2}<1$. Then

$$
\begin{equation*}
\left\|(A+E)^{+}\right\|_{2} \leqslant \frac{\left\|A^{+}\right\|_{2}}{1-\left\|A^{+}\right\|_{2}\|E\|_{2}} \tag{5}
\end{equation*}
$$

where $\|\cdot\|_{2}$ denotes the spectral norm of A, i.e.,

$$
\|\Delta\|_{2}=\sup _{\substack{x \in \mathbb{C}^{n} \\\|x\|_{2}=1}}\|\Delta x\|_{2}
$$

(ii) Let $\operatorname{rank}(A+E)>\operatorname{rank} A$. Then

$$
\begin{equation*}
\left\|(A+E)^{+}\right\|_{2} \geqslant \frac{1}{\|E\|_{2}} \tag{6}
\end{equation*}
$$

(d) Let $k=i(A)$. For every positive integer $h \geqslant k$, (a) holds and

$$
\begin{equation*}
A^{D}=A^{h}\left(A^{2 h+1}\right)^{+} A^{h} \tag{7}
\end{equation*}
$$

(e) Unless it is indicated specifically, a (fixed) unitarily invariant norm is applied throughout this paper. Thus, for every matrix $A \in \mathbb{C}^{n \times n}$ and every unitary matrix $U \in \mathbb{C}^{n \times n},\left\|U A U^{H}\right\|=\|A\|$.

Further, the following two inequalities are always used: for every matrix $A \in \mathbb{C}^{n \times n}$,

$$
\begin{align*}
& \|A\|_{2} \leqslant\|A\|^{2} \tag{8}\\
& \|A B\| \leqslant\|A\|_{2}\|B\| \text { or }\|A\|\|B\|_{2}
\end{align*}
$$

For the details of Moore-Penrose inverse and Drazin inverse, see the books by Ben-Israel and Greville [3] and by Campbell and Meyer [2]. The proof of (c) has appeared in Noble's paper [4]. Mirsky has given a systematic treatment of unitarily invariant norms [5].
III. THE CASE $\operatorname{rank} A^{k}=\operatorname{rank}(A+E)^{k}$

Let $A, E \in \mathbb{C}^{n \times n}, B=A+E$, and for any arbitrary positive integer h, define $E\left(A^{h}\right)$ by $B^{h}-A^{h}=E\left(A^{h}\right)$. Then $\left\|B^{h}\right\|_{2} \leqslant\left\|A^{h}\right\|_{2}+\mathcal{E}\left(A^{h}\right)$, where

$$
\mathfrak{G}\left(A^{h}\right)=\sum_{i=0}^{h-1} C_{h}^{i}\|A\|_{2}^{i}\|E\|_{2}^{h-i} \geqslant\left\|E\left(A^{h}\right)\right\|_{2}
$$

and C_{h}^{i} is the binomial coefficient.
Lemma 1. Let $\operatorname{rank} B^{h}=\operatorname{rank} A^{h}$ and $\left\|\left(A^{h}\right)^{+}\right\|_{2} \delta\left(A^{h}\right)<1$. Then

$$
\left\|\left(B^{h}\right)^{+}\right\|_{2} \leqslant-\frac{\left\|\left(A^{h}\right)^{+}\right\|_{2}}{1-\|\left(A^{h}\right)^{+}} \|_{2} \varepsilon\left(A^{h}\right)
$$

Proof. $\left\|\left(A^{h}\right)^{+}\right\|_{2}\left\|E\left(A^{h}\right)\right\|_{2} \leqslant\left\|\left(A^{h}\right)^{+}\right\|_{2} \mathcal{G}\left(A^{h}\right)<1$. Thus by (5), we have

$$
\begin{aligned}
\left\|\left(B^{h}\right)^{+}\right\|_{2}=\left\|\left[A^{h}+E\left(A^{h}\right)\right]^{+}\right\|_{2} & \leqslant \frac{\left\|\left(A^{h}\right)^{+}\right\|_{2}}{1-\left\|\left(A^{h}\right)^{+}\right\|_{2}\left\|E\left(A^{h}\right)\right\|_{2}} \\
& \leqslant \frac{\left\|\left(A^{h}\right)^{+}\right\|_{2}}{1-\left\|\left(A^{h}\right)^{+}\right\|_{2} \delta\left(A^{h}\right)} .
\end{aligned}
$$

Theorem 1. Let $k=i(B), \quad \operatorname{rank} A^{k}=\operatorname{rank} B^{k}$, and $\left\|\left(A^{2 k+1}\right)^{+}\right\|_{2}$ $\mathcal{G}\left(A^{2 k+1}\right)<1$. Then

$$
\left\|B^{D}\right\|_{2} \leqslant \frac{\left\|\left(A^{2 k+1}\right)^{+}\right\|_{2}\left[\left\|A^{k}\right\|_{2}+\mathscr{\mathscr { O }}\left(A^{k}\right)\right]^{2}}{1-\left\|\left(A^{2 k+1}\right)^{+}\right\|_{2} \mathcal{G}\left(A^{2 k+1}\right)}
$$

Proof. Since $B^{D}=B^{k}\left(B^{2 k+1}\right)^{+} B^{k}$,

$$
\left\|B^{D}\right\|_{2} \leqslant\left\|B^{k}\right\|_{2}^{2}\left\|\left(B^{2 k+1}\right)^{+}\right\|_{2}
$$

$$
\leqslant \frac{\left\|\left(A^{2 k+1}\right)^{+}\right\|_{2}}{1-\left\|\left(A^{2 k+1}\right)^{+}\right\|_{2} \mathcal{E}\left(A^{2 k+1}\right)}\left[\left\|A^{k}\right\|_{2}+\mathcal{E}\left(A^{k}\right)\right]^{2}, \quad \text { by Lemma } 1
$$

Theorem 1 tells us $B^{D}=(A+E)^{D}$ is bounded in the neighborhood of $\|E\|$ provided $\operatorname{rank} A^{i(B)}=\operatorname{rank} B^{i(B)}$. This is one of the bases for deriving the error estimate for the Drazin inverse, and the second is contained in the asymptotic expansion of $B^{D}-A^{D}$. It can be derived as follows:

Let $k=\max \{i(A), i(B)\}$. Then

$$
\begin{align*}
B^{D}-A^{D}= & -B^{D} E A^{D}+\left[B^{D}-A^{D}+B^{D}(B-A) A^{D}\right] \\
= & -B^{D} E A^{D}+B^{D}\left(1-A A^{D}\right)-\left(1-B^{D} B\right) A^{D} \\
= & -B^{D} E A^{D}+\left(B^{D}\right)^{k+1} B^{k}\left(1-A A^{D}\right)-\left(1-B^{D} B\right) A^{k}\left(A^{D}\right)^{k+1} \\
= & -B^{D} E A^{D}+\left(B^{D}\right)^{k+1}\left[A^{k}+E\left(A^{k}\right)\right]\left(1-A A^{D}\right) \\
& -\left(1-B^{D} B\right)\left[B^{k}-E\left(A^{k}\right)\right]\left(A^{D}\right)^{k+1} \\
= & -B^{D} E A^{D}+\left(B^{D}\right)^{k+1} E\left(A^{k}\right)\left(1-A A^{D}\right) \\
& +\left(1-B^{D} B\right) E\left(A^{k}\right)\left(A^{D}\right)^{k+1} \tag{9}
\end{align*}
$$

By taking $\|\cdot\|$ of both sides of (9) and noticing (8),

$$
\begin{aligned}
\left\|B^{D}-A^{D}\right\| \leqslant & \left\|B^{\bar{D}}\right\|_{2}\left\|A^{D}\right\|_{2}\|E\|+\left\|B^{\mathscr{D}}\right\|_{2}^{k+1}\left(1+\left\|A A^{\bar{D}}\right\|_{2}\right)\left\|E\left(A^{k}\right)\right\| \\
& +\left(1+\left\|B^{D} B\right\|_{2}\right)\left\|A^{D}\right\|_{2}^{k+1}\left\|E\left(A^{k}\right)\right\|
\end{aligned}
$$

where

$$
\left\|E\left(A^{k}\right)\right\| \leqslant \sum_{i=0}^{k-1} C_{k}^{i}\|A\|_{2}^{i}\|E\|^{k-i} .
$$

Let $\delta\left(A^{2 k+1}\right)\left\|\left(A^{2 k+1}\right)^{+}\right\|_{2}<1$ and $\operatorname{rank} A^{k}=\operatorname{rank} B^{k}$. Then by Theorem 1 ,

$$
B^{D}=\Lambda^{D}+O(\|E\|)
$$

Substitute B^{D} in the right hand side of (9):

$$
\begin{align*}
B^{D}-A^{D}= & -\left[A^{D}+O(\|E\|)\right] E A^{D}+\left[A^{D}+O(\|E\|)\right]^{k+1} E\left(A^{k}\right)\left(1-A A^{D}\right) \\
& +\left\{1-\left[A^{D}+O(\|E\|)\right](A+E)\right\} E\left(A^{k}\right)\left(A^{D}\right)^{k+1} \\
= & -A^{D} E A^{D}+\left(A^{D}\right)^{k+1} \sum_{i=0}^{k-1} A^{i} E A^{k-1-i}\left(1-A A^{D}\right) \\
& +\left(1-A^{D} A\right) \sum_{i=0}^{k-1} A^{i} E A^{k-1-i}\left(A^{D}\right)^{k+1}+O\left(\|E\|^{2}\right) \\
= & -A^{D} E A^{D}+\sum_{i=0}^{k-1}\left(A^{D}\right)^{i+2} E A^{i}\left(1-A A^{D}\right) \\
& +\left(1-A A^{D}\right) \sum_{i=0}^{k-1} A^{i} E\left(A^{D}\right)^{i+2}+O\left(\|E\|^{2}\right) . \tag{10}
\end{align*}
$$

We are now in a position to prove the theorem bounding $\| B^{D}-$ $A^{D}\|/\| A^{D} \|_{2}$.

Theorem 2. Let $k=\max \{i(A), i(B)\}$, rank $A^{k}=\operatorname{rank} B^{k}$, and $\left\|\left(A^{2 k+1}\right)^{+}\right\|_{2} \mathcal{G}\left(A^{2 k+1}\right)<1$. Then

$$
\frac{\left\|B^{D}-A^{D}\right\|}{\left\|A^{D}\right\|_{2}} \leqslant C(A) \frac{\|E\|}{\|A\|_{2}}+o(\|E\|)
$$

where the condition number

$$
C(A)=\left[2 \sum_{i=0}^{k-1}\left\|\left(A^{D}\right)^{i+1}\right\|_{2}\left\|A^{i}\right\|_{2}\left(1+\|A\|_{2}\left\|A^{D}\right\|_{2}\right)+\left\|A^{D}\right\|_{2}\right]\|A\|_{2}
$$

and $o(\|E\|)$ is of the second order in E.
Proof. Take $\|\cdot\|$ of both sides of (10) to get that

$$
\begin{aligned}
\left\|B^{D}-A^{D}\right\| \leqslant & {\left[2 \sum_{i=0}^{k-1}\left\|\left(A^{D}\right)^{i+2}\right\|_{2}\left\|A^{i}\right\|_{2}\left(1+\|A\|_{2}\left\|A^{D}\right\|_{2}\right)+\left\|A^{D}\right\|_{2}^{2}\right]\|E\| } \\
& +\left\|O\left(\|E\|^{2}\right)\right\|
\end{aligned}
$$

and the result is obvious.

Theorem 2 additionally suggests that k may have an effect on $\| B^{D}-$ $A^{D}\|/\| A^{D} \|_{2}$, if one notes that $C(A) \geqslant 4 k+1$, where the 4 results from the "crude" estimate $\|A\|\left\|A^{D}\right\| \geqslant\left\|A A^{D}\right\| \geqslant 1$.

Moreover, by Theorem 2, we get the sufficient condition for continuity.

Corollary 2. Let $\left\|E_{i}\right\| \rightarrow 0, k_{i}=\max \left\{i(A), i\left(A+E_{i}\right)\right\}$. If there exists a positive integer i_{o} such that for every $i \geqslant i_{o}$, $\operatorname{rank} A^{k_{i}}=\operatorname{rank}\left(A+E_{i}\right)^{k_{i}}$, then $\left(A+E_{i}\right)^{D} \rightarrow A^{D}$.

The derivative of A^{D} can also be derived from (10). Define corerank $A=$ $\operatorname{rank}\left(A^{i(A)}\right), k=i(A)$. If $A(t)$ is a differentiable matrix function and corerank $A(t)=$ constant, $i(A(t)) \leqslant k$, for every t, then

$$
\begin{aligned}
\frac{d A^{D}}{d t}= & \sum_{i=0}^{k-1}\left[\left(A^{D}\right)^{i+2} \frac{d A}{d t} A^{i}\left(1-A^{D} A\right)+\left(1-A A^{D}\right) A^{i} \frac{d A}{d t}\left(A^{D}\right)^{i+2}\right] \\
& -A^{D} \frac{d A}{d t} A^{D}
\end{aligned}
$$

These two results have been obtained by Campbell and Meyer by different methods [1, 6].
IV. THE CASE rank $A^{k}<\operatorname{rank}(A+E)^{k}$

The next lemma, which we have used to obtain a vector $y \in R(A+E)^{k} \cap$ $N\left(A^{k}\right)$, where $N(A)$ is the null space of A, is proved by Campbell and Meyer [1].

Lemma 2. Let S, T be subspaces $\subseteq \mathbb{C}^{n}, \operatorname{dim} S>\operatorname{dim} T$, and $\mathbb{C}^{n}=T \oplus T^{\prime}$. Then there exists $z \neq 0, z \in S \cap T^{\prime}$.

Theorem 3. Let $B=A+E, k=\max \{i(A), i(B)\}, \operatorname{rank} B^{k}>\operatorname{rank} A^{k}$. Then

$$
\left\|B^{D}\right\|_{2} \geqslant \frac{1}{\mathscr{E}\left(A^{k}\right)^{1 / k}}
$$

Proof. Note that $R\left(A^{k}\right) \oplus N\left(A^{k}\right)=\mathbb{C}^{n}$. Thus, by Lemma 2, rank $B^{k}>$ $\operatorname{rank} A^{k}$ implies there exists $y \neq 0, y \in R\left(B^{k}\right) \cap N\left(A^{k}\right)$. Without loss of generality, we can assume $\|y\|_{2}=1$.

Again note that $B^{D} B$ is a projection on $R\left(B^{k}\right)$ along $N\left(B^{k}\right)$ and $B^{D} B=$ $\left(B^{D}\right)^{k} B^{k}$. Then

$$
\begin{aligned}
1 & =y^{H} y=y^{H}\left(B^{D}\right)^{k} B^{k} y \\
& =y^{H}\left(B^{D}\right)^{k} E\left(A^{k}\right) y \\
& \leqslant\left\|B^{D}\right\|_{2}^{k} \mathscr{G}\left(A^{k}\right), \quad \text { by the Cauchy inequality. }
\end{aligned}
$$

In other words,

$$
\left\|B^{D}\right\|_{2} \geqslant \frac{1}{\mathscr{E}\left(A^{k}\right)^{1 / k}}
$$

The following example shows this lower bound is sharp for $k=2$. It is related to an example in [2, p. 232].

Example. I et

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad E=\left[\begin{array}{ll}
\varepsilon & 0 \\
0 & 0
\end{array}\right]
$$

Then

$$
A^{D}=0 \text { and }(A+E)^{D}=\left[\begin{array}{cc}
1 / \varepsilon & (1 / \varepsilon)^{2} \\
0 & 0
\end{array}\right]
$$

and $i(A)=2, i(A+E)=1$. Thus $k=2$ and $\operatorname{rank}(A+E)^{2}=1>\operatorname{rank} A^{2}=0$. By noting that $\|A\|_{2}^{2}$ is the maximum eigenvalue of $A^{T} A$, we have $\left\|(A+E)^{D}\right\|_{2}=(1 / \varepsilon) \sqrt{1+(1 / \varepsilon)^{2}}, \quad \delta\left(A^{2}\right)=\|E\|_{2}^{2}+2\|A\|_{2}\|E\|_{2}=\varepsilon^{2}+2 \varepsilon$.
Hence

$$
\lim _{\varepsilon \rightarrow \infty}\left\|(A+E)^{D}\right\|_{2} \mathcal{E}\left(A^{2}\right)^{1 / 2}=1
$$

Proposition. Let $\left\|E_{i}\right\|_{2} \rightarrow 0, k_{i}=\max \left\{i\left(A+E_{i}\right), i(A)\right\}$. Then there exists a positive integer i_{0} such that for every $i \geqslant i_{0}, \operatorname{rank}\left(A+E_{i}\right)^{k_{i}} \geqslant \operatorname{rank} A^{k_{i}}$.

Proof. Assume there exists an infinite subsequence $\left\{A+E_{i_{j}}\right\}$ such that

$$
\operatorname{rank}\left(A+E_{i_{i}}\right)^{k_{i j}}<\operatorname{rank} A^{k_{i_{i}}}
$$

or alternatively,

$$
\operatorname{rank}\left(A+E_{i_{i}}\right)^{n}<\operatorname{rank} A^{n}
$$

Apply (6), and we have

$$
\left\|\left(A^{n}\right)^{+}\right\|_{2} \geqslant \frac{1}{\delta_{i},\left(A^{n}\right)} \rightarrow \infty \quad \text { when } \quad i \rightarrow \infty,
$$

a contradiction.
By this proposition and Theorem 3, we can prove the necessary condition for the continuity that was proved in Campbell and Meyer [1], in a different way.

Corollary 4. Let $\left\|E_{i}\right\|_{2} \rightarrow 0, k_{i}=\max \left\{i(A), i\left(A+E_{i}\right)\right\}$, and $\operatorname{rank}(A$ $\left.+E_{i}\right)^{k_{i}} \neq \operatorname{rank} A^{k_{i}}$. Then $\left(A+E_{i}\right)^{D} \rightarrow A^{D}$.

Proof. By the last proposition, $\operatorname{rank}\left(A+E_{i}\right)^{k_{i}} \neq \operatorname{rank} A^{k_{i}}$ implies that there exists a positive integer i_{o} such that for every $i \geqslant i_{o}, \operatorname{rank}\left(A+E_{i}\right)^{k_{i}}>$ $\operatorname{rank} A^{k_{i}}$. By Theorem 3, $\left\|\left(A+E_{i}\right)^{D}\right\|_{2} \geqslant 1 / \mathcal{E}\left(A^{k_{i}}\right)^{1 / k_{i}} \rightarrow \infty$.

V. CLOSING REMARK

The decomposition $A^{D}=A^{k}\left(A^{2 k+1}\right)^{+} A^{k}$ shows that the continuity for $\left(A^{2 k+1}\right)^{+}$is essential for the continuity for A^{D}. So in our paper we have considered the perturbation $\mathcal{E}\left(A^{2 k+1}\right)$ of $\Lambda^{2 k+1}$ as a whole instead of the perturbation $\|E\|$ of A. The derivation of the norm estimate for the Drazin inverse turns out surprisingly simple and conventional, and we have worked out the continuity theorem and the differentiation of A^{D} from a unified point of view.

REFERENCES

1 S. L. Campbell and C. D. Meyer, Continuity properties of the Drazin inverse, Linear Algebra Appl. 10:77-83 (1975).

2 S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations, Pitman, 1979.
3 A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley, 1974.
4 B. Noble, Method for computing the Moore-Penrose generalized inverse and related matters, in Generalized Inverse and its Application, (M. Z. Nashed, Ed.), 1976.

5 L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Quart.J. Math. Oxford Ser. (2) 11, No. 2 (1960).
6 S. L. Campbell, Differentiation of the Drazin inverse, Linear and Multilinear Algebra 8, No. 3 (1980).
7 G. W. Stewart, On the perturbation of pseudo-inverses, projections and linear least squares problems, SIAM Rev. 19, No. 4 (Oct. 1977).

Received 13 October 1981; revised 22 February 1982

